128 research outputs found

    Are All Combinations Equal? Combining Textual and Visual Features with Multiple Space Learning for Text-Based Video Retrieval

    Full text link
    In this paper we tackle the cross-modal video retrieval problem and, more specifically, we focus on text-to-video retrieval. We investigate how to optimally combine multiple diverse textual and visual features into feature pairs that lead to generating multiple joint feature spaces, which encode text-video pairs into comparable representations. To learn these representations our proposed network architecture is trained by following a multiple space learning procedure. Moreover, at the retrieval stage, we introduce additional softmax operations for revising the inferred query-video similarities. Extensive experiments in several setups based on three large-scale datasets (IACC.3, V3C1, and MSR-VTT) lead to conclusions on how to best combine text-visual features and document the performance of the proposed network. Source code is made publicly available at: https://github.com/bmezaris/TextToVideoRetrieval-TtimesVComment: Accepted for publication; to be included in Proc. ECCV Workshops 2022. The version posted here is the "submitted manuscript" versio

    Learning to detect video events from zero or very few video examples

    Get PDF
    In this work we deal with the problem of high-level event detection in video. Specifically, we study the challenging problems of i) learning to detect video events from solely a textual description of the event, without using any positive video examples, and ii) additionally exploiting very few positive training samples together with a small number of ``related'' videos. For learning only from an event's textual description, we first identify a general learning framework and then study the impact of different design choices for various stages of this framework. For additionally learning from example videos, when true positive training samples are scarce, we employ an extension of the Support Vector Machine that allows us to exploit ``related'' event videos by automatically introducing different weights for subsets of the videos in the overall training set. Experimental evaluations performed on the large-scale TRECVID MED 2014 video dataset provide insight on the effectiveness of the proposed methods.Comment: Image and Vision Computing Journal, Elsevier, 2015, accepted for publicatio

    Combination of Accumulated Motion and Color Segmentation for Human Activity Analysis

    Get PDF
    The automated analysis of activity in digital multimedia, and especially video, is gaining more and more importance due to the evolution of higher-level video processing systems and the development of relevant applications such as surveillance and sports. This paper presents a novel algorithm for the recognition and classification of human activities, which employs motion and color characteristics in a complementary manner, so as to extract the most information from both sources, and overcome their individual limitations. The proposed method accumulates the flow estimates in a video, and extracts “regions of activity†by processing their higher-order statistics. The shape of these activity areas can be used for the classification of the human activities and events taking place in a video and the subsequent extraction of higher-level semantics. Color segmentation of the active and static areas of each video frame is performed to complement this information. The color layers in the activity and background areas are compared using the earth mover's distance, in order to achieve accurate object segmentation. Thus, unlike much existing work on human activity analysis, the proposed approach is based on general color and motion processing methods, and not on specific models of the human body and its kinematics. The combined use of color and motion information increases the method robustness to illumination variations and measurement noise. Consequently, the proposed approach can lead to higher-level information about human activities, but its applicability is not limited to specific human actions. We present experiments with various real video sequences, from sports and surveillance domains, to demonstrate the effectiveness of our approach

    Learning Visual Explanations for DCNN-Based Image Classifiers Using an Attention Mechanism

    Full text link
    In this paper two new learning-based eXplainable AI (XAI) methods for deep convolutional neural network (DCNN) image classifiers, called L-CAM-Fm and L-CAM-Img, are proposed. Both methods use an attention mechanism that is inserted in the original (frozen) DCNN and is trained to derive class activation maps (CAMs) from the last convolutional layer's feature maps. During training, CAMs are applied to the feature maps (L-CAM-Fm) or the input image (L-CAM-Img) forcing the attention mechanism to learn the image regions explaining the DCNN's outcome. Experimental evaluation on ImageNet shows that the proposed methods achieve competitive results while requiring a single forward pass at the inference stage. Moreover, based on the derived explanations a comprehensive qualitative analysis is performed providing valuable insight for understanding the reasons behind classification errors, including possible dataset biases affecting the trained classifier.Comment: Accepted for publication; to be included in Proc. ECCV Workshops 2022. The version posted here is the "submitted manuscript" versio

    Masked Feature Modelling: Feature Masking for the Unsupervised Pre-training of a Graph Attention Network Block for Bottom-up Video Event Recognition

    Full text link
    In this paper, we introduce Masked Feature Modelling (MFM), a novel approach for the unsupervised pre-training of a Graph Attention Network (GAT) block. MFM utilizes a pretrained Visual Tokenizer to reconstruct masked features of objects within a video, leveraging the MiniKinetics dataset. We then incorporate the pre-trained GAT block into a state-of-the-art bottom-up supervised video-event recognition architecture, ViGAT, to improve the model's starting point and overall accuracy. Experimental evaluations on the YLI-MED dataset demonstrate the effectiveness of MFM in improving event recognition performance.Comment: 8 page

    Combining textual and visual information processing for interactive video retrieval: SCHEMA's participation in TRECVID 2004

    Get PDF
    In this paper, the two different applications based on the Schema Reference System that were developed by the SCHEMA NoE for participation to the search task of TRECVID 2004 are illustrated. The first application, named ”Schema-Text”, is an interactive retrieval application that employs only textual information while the second one, named ”Schema-XM”, is an extension of the former, employing algorithms and methods for combining textual, visual and higher level information. Two runs for each application were submitted, I A 2 SCHEMA-Text 3, I A 2 SCHEMA-Text 4 for Schema-Text and I A 2 SCHEMA-XM 1, I A 2 SCHEMA-XM 2 for Schema-XM. The comparison of these two applications in terms of retrieval efficiency revealed that the combination of information from different data sources can provide higher efficiency for retrieval systems. Experimental testing additionally revealed that initially performing a text-based query and subsequently proceeding with visual similarity search using one of the returned relevant keyframes as an example image is a good scheme for combining visual and textual information

    Deep Learning for Mobile Multimedia: A Survey

    Get PDF
    Deep Learning (DL) has become a crucial technology for multimedia computing. It offers a powerful instrument to automatically produce high-level abstractions of complex multimedia data, which can be exploited in a number of applications, including object detection and recognition, speech-to- text, media retrieval, multimodal data analysis, and so on. The availability of affordable large-scale parallel processing architectures, and the sharing of effective open-source codes implementing the basic learning algorithms, caused a rapid diffusion of DL methodologies, bringing a number of new technologies and applications that outperform, in most cases, traditional machine learning technologies. In recent years, the possibility of implementing DL technologies on mobile devices has attracted significant attention. Thanks to this technology, portable devices may become smart objects capable of learning and acting. The path toward these exciting future scenarios, however, entangles a number of important research challenges. DL architectures and algorithms are hardly adapted to the storage and computation resources of a mobile device. Therefore, there is a need for new generations of mobile processors and chipsets, small footprint learning and inference algorithms, new models of collaborative and distributed processing, and a number of other fundamental building blocks. This survey reports the state of the art in this exciting research area, looking back to the evolution of neural networks, and arriving to the most recent results in terms of methodologies, technologies, and applications for mobile environments
    corecore